Bayesian network–response regression
نویسندگان
چکیده
منابع مشابه
Incremental Nonparametric Bayesian Regression
In this paper we develop an incremental estimation algorithm for infinite mixtures of Gaussian process experts. Incremental, local, non-linear regression algorithms are required for a wide variety of applications, ranging from robotic control to neural decoding. Arguably the most popular and widely used of such algorithms is currently Locally Weighted Projection Regression (LWPR) which has been...
متن کاملBayesian Regression and Classification
In recent years Bayesian methods have become widespread in many domains including computer vision, signal processing, information retrieval and genome data analysis. The availability of fast computers allows the required computations to be performed in reasonable time, and thereby makes the benefits of a Bayesian treatment accessible to an ever broadening range of applications. In this tutorial...
متن کاملBayesian quantile regression
1. Introduction: Recent work by Schennach(2005) has opened the way to a Bayesian treatment of quantile regression. Her method, called Bayesian exponentially tilted empirical likelihood (BETEL), provides a likelihood for data y subject only to a set of m moment conditions of the form Eg(y, θ) = 0 where θ is a k dimensional parameter of interest and k may be smaller, equal to or larger than m. Th...
متن کاملBayesian Density Regression
This article considers Bayesian methods for density regression, allowing a random probability distribution to change flexibly with multiple predictors. The conditional response distribution is expressed as a nonparametric mixture of regression models, with the mixture distribution changing with predictors. A class of weighted mixture of Dirichlet process (WMDP) priors is proposed for the uncoun...
متن کاملBayesian isotonic density regression.
Density regression models allow the conditional distribution of the response given predictors to change flexibly over the predictor space. Such models are much more flexible than nonparametric mean regression models with nonparametric residual distributions, and are well supported in many applications. A rich variety of Bayesian methods have been proposed for density regression, but it is not c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2017
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/btx050